From clearcutting to continuous cover forestry: impacts on investment profitability, harvest, and carbon dynamics in Poland.
Main Article Content
Keywords
clearcut management, continuous cover forestry (CCF), discounted cash flow (DCF) analysis, improved forest management (IFM), Poland, Scots pine
Abstract
Improved forest management (IFM), particularly the transition of even-aged forests to continuous cover forestry (CCF), is gaining attention as a management approach that may contribute to climate change mitigation by enhancing forest carbon sequestration and maintaining soil carbon storage. CCF aims to maintain continuous tree cover over time by using selective harvesting and natural regeneration instead of clear-cutting (CC), and is promoted as a forest management method that enhances productivity, ecological, and social benefits. Using a Scots pine stand management in Poland, we evaluated the profitability, harvest rates, and carbon fluxes of CCF compared to traditional CC. We used discounted cash flow models to assess the potential benefits of transitioning even-aged Scots pine stands to a CCF regime. At the assumed 5% discount rate, CC management had higher Land Expectation Values (LEVs), while CCF had higher internal rates of return (IRR) for lower land acquisition prices of 8,000 EUR or less. For land prices ranging from 9,000 to 11,000 EUR, IRRs varied considerably depending on the age at which the stand was transitioned to CCF. Purchasing older forests, which then produced earlier harvest revenues, was more profitable. CC management consistently produced more wood per hectare than CCF, but since CCF had lower input costs, the costs per tonne of CO2e were similar between the two management regimes, as were the wood production costs. Our findings highlight important trade-offs, suggesting that while CCF may not always maximize wood yields, it can offer competitive financial performance under favorable land prices while simultaneously supporting climate mitigation objectives.
References
Ameray A, Bergeron Y, Valeria O, Montoro Girona M, Cavard X. 2021. Forest carbon management: a review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr For Rep. https://doi.org/10.1007/s40725-021-00151-w
Andrzejczyk T. 2006. Rębnia przerębowa w drzewostanach sosnowych [Selection - management in pine stands]. Sylwan. 8:52-60.
Andrzejczyk T. 2003. Różnowiekowe drzewostany sosnowe. Powstawanie, struktura, hodowla. [Unevenaged Scots pine stands - origin, structure, silviculture]. Warsaw (PL): SGGW Press. 144 p.
Bianchi S, Huuskonen S, Siipilehto J, Hynynen J. 2020. Differences in tree growth of Norway spruce under rotation forestry and continuous cover forestry. For Ecol Manage. 458:117689. https://doi.org/10.1016/j.foreco.2019.117689
Česonienė L, Daubaras R, Tamutis V, Kaškonienė V, Kaškonas P, Stakėnas V, Zych M. 2019. Effect of clear-cutting on the understory vegetation, soil and diversity of litter beetles in Scots pine-dominated forest. J Sustain For. 38:791-808. https://doi.org/10.1080/10549811.2019.1607755
Chudy R. 2023. Ile Lasy Państwowe płacą za las? Forest Monitor Blog [Internet]. Available from: https://www.blog.forest-monitor.com/pl/ile-lasy-panstwowe-placa-za-las/
Chudy R, Chudy KA, Kanieski da Silva B, Cubbage FW, Rubilar R, Lord R. 2020. Profitability and risk sources in global timberland investments. For Policy Econ. 111. https://doi.org/10.1016/j.forpol.2019.102037
Chudy R, Cubbage F, Siry J, Chudy J. 2022. The profitability of artificial and natural regeneration: A forest investment comparison of Poland and the U.S. South. J For Bus Res. 1(1) 1-20. https://doi.org/10.62320/jfbr.v1i1.5
Chudy R, Stevanov M, Krott M. 2016. Strategic options for state forest institutions in Poland: evaluation by the 3L model and ways ahead. Int For Rev. 18. https://doi.org/10.1505/146554816820127532
Chudy RP, Mei B, Skjerstad S. 2021. The performance of private equity timberland funds in the United States between 1985 and 2018. In Review. J For Econ. 37 (2). https://doi.org/10.1561/112.00000550
Cubbage F, Donagh PM, Balmelli G, Olmos VM, Bussoni A, Rubilar R, De La Torre R, Lord R, Huang J, Hoeflich VA, Murara M, Kanieski B, Hall P, Yao R, Adams P, Kotze H, Monges E, Pérez CH, Wikle J, Abt R, Gonzalez R, Carrero O. 2014. Global timber investments and trends, 2005-2011. New Zeal J For Sci. 44:2005-2011. https://doi.org/10.1186/1179-5395-44-S1-S7
Cubbage F, Koesbandana S, Mac Donagh P, Rubilar R, Balmelli G, Olmos VM, De La Torre R, Murara M, Hoeflich VA, Kotze H, Gonzalez R, Carrero O, Frey G, Adams T, Turner J, Lord R, Huang J, MacIntyre C, McGinley K, Abt R, Phillips R. 2010. Global timber investments, wood costs, regulation, and risk. Biomass Bioenergy. 34:1667-1678. https://doi.org/10.1016/j.biombioe.2010.05.008
Cubbage F, Mac Donagh P, Sawinski J, Rubilar R, Donoso P, Ferreira A, Hoeflich V, Olmos VM, Ferreira G, Balmelli G, Siry J, Báez MN, Alvarez J. 2007. Timber investment returns for selected plantations and native forests in South America and the southern United States. New For. 33:237-255. https://doi.org/10.1007/s11056-006-9025-4
Cubbage F, Rubilar R, Mac Donagh P, Kanieski Da Silva B, Bussoni A, Morales V, Balmelli G, Afonso Hoeflich V, Lord R, Hernández C, Zhang P, Tran Thi Thu H, Yao R, Hall P, Korhonen J, Díaz-Balteiro L, Rodríguez-Soalleiro R, Davis R, Chudy R, De La Torre R, Jaime Lopera G, Phimmavong S, Garzón S, Cubas-Baez A. 2022. Comparative global timber investment costs, returns, and applications. J For Bus Res. 1 (1) 90-121. https://doi.org/10.62320/jfbr.v1i1.16
Czacharowski M, Drozdowski S. 2021. Zagospodarowanie drzewostanów sosnowych (Pinus sylvestris L.) w zmieniających się uwarunkowaniach środowiskowych i społecznych [Management of Scots pine (Pinus sylvestris L.) stands under changing environmental and social conditions]. Sylwan. 165:355-370.
Ersson BT. 2020. Hyggesfritt skogsbruk. Publikation inom EU Erasmus+ projektet Net4Forest [Internet]. Available from: https://www.slu.se/institutioner/skogsmastarskolan/forskning/net4forest/
European Commission. 2021. Future Brief 25. Brief produced for the European Commission DG Environment by the Science Communication Unit, UWE Bristol [Internet]. Available from: https://environment.ec.europa.eu/publications/future-brief-european-forests-biodiversity-climate-change-mitigation-and-adaptation-issue-25_en
Eyvindson K, Duflot R, Triviño M, Blattert C, Potterf M, Mönkkönen M. 2021. High boreal forest multifunctionality requires continuous cover forestry as a dominant management. Land Use Policy. 100:104918. https://doi.org/10.1016/j.landusepol.2020.104918
Fagerberg N. 2022. Individual-tree-selection in uneven-sized Norway spruce stands in southern Sweden: Developments of tools for simulation and optimization. Linnaeus University Dissertations No. 467/2022 [Internet]. Available from: https://lnu.diva-portal.org/smash/record.jsf?pid=diva2%3A1701430&dswid=-1491
Fedrowitz K, Koricheva J, Baker SC, Lindenmayer DB, Palik B, Rosenvald R, Beese W, Franklin JF, Kouki J, Macdonald E, Messier C, Sverdrup-Thygeson A, Gustafsson L. 2014. Can retention forestry help conserve biodiversity? A meta-analysis. J Appl Ecol. 51 (6). https://doi.org/10.1111/1365-2664.12289
Gallo J, Bílek L, Šimůnek V, Roig S, Bravo Fernández JA. 2020. Uneven-aged silviculture of Scots pine in Bohemia and Central Spain: Comparison study of stand reaction to transition and long-term selection management. J For Sci. 66:22-35. https://doi.org/10.17221/147/2019-JFS
Granhus, A., Antón-Fernández, C., de Wit, H., Hanssen, K.H., Høistad Schei, F.; Jacobsen, R.M., Jansson, U., Korpunen, H., Mohr, C.W., Nordén, J., Rolstad, J., Sevillano, I., Solberg, S., Storaunet, K-O, Vergarechea, M. 2024. Effekter på karbondynamikk, miljø, og næring ved økt bruk av lukkede hogstformer. Miljødirektoratet Rapport M-2758/NIBIO Rapport 10(48)
Haya BK, Evans S, Brown L, Bukoski J, Butsic V, Cabiyo B, Jacobson R, Kerr A, Potts M, Sanchez DL. 2023. Comprehensive review of carbon quantification by improved forest management offset protocols. Front For Glob Chang. 6:12. https://doi.org/10.3389/ffgc.2023.958879
Jelonek T, Pazdrowski W, Arasimowicz-Jelonek M, Tomczak A. 2010. Właściwości drewna sosny zwyczajnej (Pinus sylvestris L.) pochodzącej z gruntów porolnych. Sylwan. 154(5):299-311.
Kaarakka L, Cornett M, Domke G, Ontl T, Dee LE. 2021. Improved forest management as a natural climate solution: A review. Ecol Solut Evid. 2:e12090. https://doi.org/10.1002/2688-8319.12090
Kaimre P, Kängsepp V, Sirgmets R. 2024. Economic assessment of transformation to continuous cover forest management in Estonia. Balt For. 30:id746. https://doi.org/10.46490/BF746
Kanieski da Silva B, Shons SZ, Cubbage FW, Parajuli R. 2020. Spatial and cross-product price linkages in the Brazilian pine timber markets. For Policy Econ. 117:102186. https://doi.org/10.1016/j.forpol.2020.102186
Koivula M, Silvennoinen H, Koivula H, Tikkanen J, Tyrväinen L. 2020. Continuous-cover management and attractiveness of managed Scots pine forests. Can J For Res. 50:819-828. https://doi.org/10.1139/cjfr-2019-0431
Kuuluvainen T, Tahvonen O, Aakala T. 2012. Even-aged and uneven-aged forest management in boreal Fennoscandia: A review. Ambio 41, 720-737. https://doi.org/10.1007/s13280-012-0289-y
Lamlom SH, Savidge RA. 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy. 25:381-388. https://doi.org/10.1016/S0961-9534(03)00033-3
Larsen JB, Angelstam P, Bauhus J, Carvalho JF, Diaci J, Dobrowolska D, Gazda A, Gustafsson L, Krumm F, Knoke T, Konczal A, Kuuluvainen T, Mason B, Motta R, Pötzelsberger E, Rigling A, Schuck A. 2022. Closer-to-nature forest management: From science to policy. https://doi.org/10.36333/fs12
Lindeskog M, Smith B, Lagergren F, Sycheva E, Ficko A, Pretzsch H, Rammig A. 2021. Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): Implementation and evaluation of simulations for Europe. Geosci Model Dev. 14:6071-6112. https://doi.org/10.5194/gmd-14-6071-2021
Mandziuk A, Parzych S. 2019. Ceny sprzedaży drewna w użytkowaniu przedrębnym w drzewostanach sosnowych w zależności od ich wieku [Prices of timber sales in the intermediate harvest in Scots pine stands depending on their age]. Sylwan 163 (11) 883-891, 2019. https://doi.org/10.26202/sylwan.2019082
Martin AR, Doraisami M, Thomas SC. 2018. Global patterns in wood carbon concentration across the world's trees and forests. Nat Geosci. 11:915-920. https://doi.org/10.1038/s41561-018-0246-x
Matthews G. 1993. The carbon content of trees. Forestry Commission Technical Paper 4. Edinburgh, UK: Forestry Commission. Available from: www.forestresearch.gov.uk/documents/6904/FCTP004.pdf
Norkute M, Sverdrup-Thygeson A, Asplund J, Nordén J, Lish G, Fimreite IS, Karlstad RR, Birkemoe T. 2025. Clear-cutting has a long-term impact on red-listed saproxylic beetles in boreal forests with deadwood diversity as the main driver. For Ecol Manage. 598:123228. https://doi.org/10.1016/j.foreco.2025.123228
Oberpriller J, Herschlein C, Anthoni P, Arneth A, Krause A, Rammig A, Lindeskog M, Olin S, Hartig F. 2022. Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0). Geosci Model Dev. 15:6495-6519. https://doi.org/10.5194/gmd-15-6495-2022
Parkatti VP, Assmuth A, Rämö J, Tahvonen O. 2019. Economics of boreal conifer species in continuous cover and rotation forestry. For Policy Econ. 100:55-67. https://doi.org/10.1016/j.forpol.2018.11.003
Peura M, Burgas D, Eyvindson K, Repo A, Mönkkönen M. 2018. Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia. Biol Conserv. 217:104-112. https://doi.org/10.1016/j.biocon.2017.10.018
Pommerening A, Murphy ST. 2004. History of continuous cover forestry. Forestry. 77:27-44. https://doi.org/10.1093/forestry/77.1.27
Pukkala T. 2018. Instructions for optimal any-aged forestry. For An Int J For Res. 91:563-574. https://doi.org/10.1093/forestry/cpy015
Pukkala T, Lähde E, Laiho O. 2010. Optimizing the structure and management of uneven-sized stands of Finland. For An Int J For Res. 83:129-142. https://doi.org/10.1093/forestry/cpp037
Roth E-M, Sietiö O-M, Adamczyk B, Xu EP, Valkonen S, Tuittila E-S, Helmisaari H-S, Karhu K. 2026. Different effects of continuous-cover and rotation forest management on soil organic carbon stabilization in a boreal Norway spruce forest. Forest Ecology and Management 601 (February 1, 2026): 123347. https://doi.org/10.1016/J.FORECO.2025.123347
Skogsstyrelsen. 2025. Hur hyggesfritt skogsbruk påverkar biologisk mångfald: en jämförelse med konventionellt trakthyggesbruk i Sverige. Rapport 2025/11.
Stål G, Nordin A, Wikberg PE, Arnesson Ceder L, Lundmark T. 2024. Potential consequences of a rapid transition from rotation forestry to continuous cover forestry in Sweden. Scand J For Res. 39:367-376. https://doi.org/10.1080/02827581.2024.2437409
State Forests. 2023. Portal Leśno-Drzewny [Forest and Timber Portal]. Informacja o sprzedaży wybranych grup sortymentów drewna w nadleśnictwach [Information on the sale of selected groups of wood assortments in forest districts]. Available from: https://drewno.lasy.gov.pl/
State Forests. 2024. Raport o stanie lasów w Polsce 2023 [Internet]. p.15. Available from: https://www.bdl.lasy.gov.pl/portal/raporty-o-stanie-lasow
Susse R, Allegrini C, Bruciamacchie M, Burrus R. 2011. Developing the full potential of forest. Besançon, France: Association Futuaie Irreguliere.
Szymkiewicz B. 2001. Tablice zasobności i przyrostu drzewostanów ważniejszych gatunków drzew leśnych [Tables of stand volume and increment of major forest tree species]. Available from: https://es.scribd.com/document/874563827/b-szymkiewicz-tablice-zasobnosci-i-przyrostu-drzewostanow
Tahvonen O. 2009. Optimal choice between even‐and uneven‐aged forestry. Nat Resour Model. 22:289-321. https://doi.org/10.1111/j.1939-7445.2008.00037.x
Tahvonen O, Rämö J. 2016. Optimality of continuous cover vs. clear-cut regimes in managing forest resources. Can J For Res. 46:891-901. https://doi.org/10.1139/cjfr-2015-0474
Trentanovi G, Campagnaro T, Sitzia T, Chianucci F, Vacchiano G, Ammer C, Ciach M, Nagel TA, del Río M, Paillet Y, Munzi S, Vandekerkhove K, Bravo-Oviedo A, Cutini A, D'Andrea E, De Smedt P, Doerfler I, Fotakis D, Heilmann-Clausen J, Hofmeister J, Hošek J, Janssen P, Kepfer-Rojas S, Korboulewsky N, Kovács B, Kozák D, Lachat T, Mårell A, Matula R, Mikoláš M, Nordén B, Ódor P, Perović M, Pötzelsberger E, Schall P, Svoboda M, Tinya F, Ujházyová M, Burrascano S. 2023. Words apart: Standardizing forestry terms and definitions across European biodiversity studies. For Ecosyst. 10:100128. https://doi.org/10.1016/j.fecs.2023.100128
Zhang P, He Y, Feng Y, De La Torre R, Jia H, Tang J, Cubbage F. 2019. An analysis of potential investment returns of planted forests in South China. New For. 50:943-968. https://doi.org/10.1007/s11056-019-09708-x
