Modeling dominant height growth of teak plantations in the Caribbean region of Colombia

Main Article Content

Camilo E. Martínez https://orcid.org/0009-0005-2318-2200
Sergio A. Orrego https://orcid.org/0000-0001-5714-7335

Keywords

forest growth, GADA, productivity site index, Tectona grandis

Abstract

Identifying sites with adequate biological productivity is a critical factor in ensuring timber production and the profitability of forest-based investments. The productivity of forest sites is influenced by climatic, edaphic and topographic variables, as well as by silvicultural practices. Site index is a phytocentric method widely used to assess site productivity and its estimation is based on dominant height growth modeling. Teak is the fifth most planted forest species in Colombia, and its importance is associated with high economic returns and profitability. This study aims to model dominant height growth using the generalized algebraic difference approach for teak plantations established in the Caribbean region of Colombia. The Lundqvist-Korf model, in which the correlation of the residuals was handled with a continuous autoregressive specification of the first order, resulted in a satisfactory statistical estimation of the dominant height growth. The results indicate that in the Caribbean region of Colombia, productive sites for the establishment of teak plantations can be found as productive as in some tropical American countries and better than some sites in Asian countries. This suggests a potential for the expansion of teak plantations and forest-based investments in Colombia.

Abstract 80 | View Full Text Downloads 0 Download PDF Downloads 37

References

Alvarado A, Mata R. 2013. Condiciones de sitio y la silvicultura de la teca. In: Camino R de, Morales JP, editors. Las plantaciones de teca en América Latina : Mitos y realidades. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). (Serie Técnica). p. 54-84.

Bailey RL, Clutter JL. 1974. Base-Age invariant polymorphic site curves. For Sci. 20(2):155-159.

Bermejo I, Cañellas I, Miguel AS. 2004. Growth and yield models for teak plantations in Costa Rica. For Ecol Manage. 189(1-3):97-110. https://doi.org/10.1016/j.foreco.2003.07.031

von Bertalanffy L. 1976. Teoría general de los sistemas. México Editor Fondo Cult Económica. 336.

Burkhart HE, Tomé M. 2012. Modeling forest trees and stands. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-3170-9

Burnham K, Anderson D. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. Springer New York.

Cañadas ÁG, Arce LA, Molina CA. 2010. Growth, yield and teak performance in silvopastoral system in the lowland western Region, Ecuador. Quevedo - Ecuador. https://www.researchgate.net/profile/Alvaro-Canadas-Lopez/publication/320111299_Growth_Yield_and_Performance_of_Teak_in_Silvopastoral_System_in_the_Lowland_Western_Region_Ecuador/links/59cea6e6a6fdcc181abb60ed/Growth-Yield-and-Performance-of-Teak-in-Silvo.

Cieszewski CJ. 2002. Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. For Sci. 48(1):7-23. https://doi.org/10.1093/forestscience/48.1.7

Cieszewski CJ, Bailey RL. 2000. Generalized algebraic difference approach: a new methodology for derivation of biologically based dynamic site equations. For Sci. 46(1):116-126. https://doi.org/10.1093/forestscience/46.1.116

Davis RR, De la Torre R, Cubbage F, Kanieski de Silva B. 2024. Prospects for commercial tree farming in Colombia. J For Bus Res. 3(1):1-33. https://doi.org/10.62320/jfbr.v3i1.43

Diéguez-Aranda U, Burkhart HE, Amateis RL. 2006. Dynamic site model for loblolly pine (Pinus taeda L.) plantations in the United States. For Sci. 52(3):262-272. https://doi.org/10.1093/forestscience/52.3.262

Garcia O. 1983. A Stochastic differential equation model for the height growth of forest stands. Biometrics. 39(4):1059-1072. https://doi.org/10.2307/2531339

Glasbey CA. 1980. Nonlinear regression with autoregressive time series errors. Biometrics. 36:135-140. https://doi.org/10.2307/2530503

Huy B, Truong NQ, Khiem NQ, Poudel KP, Temesgen H. 2022. Stand growth modeling system for planted teak (Tectona grandis L.f.) in tropical highlands. Trees, For People. 9:100308. https://doi.org/10.1016/j.tfp.2022.100308

IGAC. 2009. Mapa digital de suelos del Departamento de Córdoba, República de Colombia. Escala 1:100.000. Subdirección Agrol. https://geoportal.igac.gov.co/contenido/datos-abiertos-agrologia.

Inga JG, del Valle JI. 2017. Log-relative growth: A new dendrochronological approach to study diameter growth in Cedrela odorata and Juglans neotropica, Central Forest, Peru. Dendrochronologia. 44:117-129. https://doi.org/10.1016/j.dendro.2017.03.009

ITTO. 2024. Tropical Timber Market Report. Int Trop Timber Organ. 28(7):30.

Jerez-Rico M, Andrade S. 2017. Establishment and management of planted teak forests. In: Kollert W, Kleine M, editors. The global teak study. Analysis, evaluation and future potential of teak resources. International Union of Forest Research Organizations (IUFRO). p. 49-65.

Jerez-Rico M, Moret-Barillas A, Carrero-Gámez O, Macchiavelly R, Quevedo-Rojas A. 2011. Curvas de Índice de sitio basadas en modelos mixtos para plantaciones de teca (Tectona grandis L. F.) en los llanos de Venezuela. Agrociencia.45:135-145.http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952011000100012&nrm=iso.

Keogh R. 2013. La teca y su importancia económica a nivel mundial. In: Camino R de, Morales JP, editors. Las plantaciones de teca en América Latina: Mitos y realidades. (Serie Técnica). p. 8-28.

Koirala A, Montes CR, Bullock BP. 2021. Modeling dominant height using stand and water balance variables for loblolly pine in the Western Gulf, US. For Ecol Manage. 479 (September 2020):118610. https://doi.org/10.1016/j.foreco.2020.118610

Kollert W, Walotek PJ. 2017. World teak resources, production, markets and trade. In: Kollert W, Kleine M, editors. The global teak study. Analysis, evaluation and future potential of teak resources. International Union of Forest Research Organizations (IUFRO). p. 83-89.

Miassi YE, Dossa FK, Akdemir Ş, Gültekin U. 2021. Economics of teak. In: Ramasamy Y, Galeano E, Win TT, editors. The Teak Genome. Cham: Springer International Publishing. p. 57-66. https://doi.org/10.1007/978-3-030-79311-1_5

Ministerio de Agricultura. 2022. Resolución 379 de 2022: Por la cual se señala el valor de los costos de establecimiento y mantenimiento de plantaciones forestales comerciales, el valor de los costos de mantenimiento de bosque natural asociados al proyecto de reforestación y se fija el i. https://www.minagricultura.gov.co/Normatividad/Resoluciones/RESOLUCIÓN 000379 DE 2022.pdf

Ministerio de Agricultura. 2023. Boletín Estadístico Forestal No. 7, Marzo 2023. Bogotá D.C., Colombia.

Moya R, Bond B, Quesada H. 2014. A review of heartwood properties of Tectona grandis trees from fast-growth plantations. Wood Sci Technol. 48(2):411-433. https://doi.org/10.1007/s00226-014-0618-3

Nafidi A, El Azri A. 2021. A stochastic diffusion process based on the Lundqvist-Korf growth: Computational aspects and simulation. Math Comput Simul. 182:25-38. https://doi.org/10.1016/j.matcom.2020.10.022

Orrego S, Montes C, Restrepo HI, Bullock BP, Zapata M. 2021. Modeling height growth for teak plantations in Colombia using the reducible stochastic differential equation approach. J For Res. 32(3):1035-1045. https://doi.org/10.1007/s11676-020-01174-y

Panik MJ. 2014. Growth curve modeling: theory and applications. John Wiley & Sons. https://doi.org/10.1002/9781118763971

Pinheiro J, Bates D. 2000. Mixed-effects models in S and S-PLUS. New York: Springer-Verlag (Statistics and Computing). https://doi.org/10.1007/978-1-4419-0318-1

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2021. nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme.

R Core Team. 2024. A language and environment for statistical computing. https://www.r-project.org/.

Restrepo H, Orrego S, Del Valle J, Salazar J. 2012. Rendimiento, turno óptimo forestal y rentabilidad de plantaciones forestales de Tectona grandis y Pinus patula en Colombia. Interciencia. 37:14-20. http://www.redalyc.org/articulo.oa?id=33922709003.

Restrepo HI, Orrego SA. 2015. A comprehensive analysis of teak plantation investment in Colombia. For Policy Econ. 57:31-37. https://doi.org/10.1016/j.forpol.2015.05.001

Santos ML dos, Miguel EP, Nappo ME, Souza HJ de, Santos CRC dos, Silva JNM, Matricardi EAT. 2023. Approaches to forest site classification as an indicator of teak volume production. Forests. 14(8):1613. https://doi.org/10.3390/f14081613

Sasidharan S. 2021. Teak plantations and wood production. In: Ramasamy Y, Galeano E, Win T, editors. The teak genome. Springer. p. 13-26. https://doi.org/10.1007/978-3-030-79311-1_2

Sasidharan S, Ramasamy Y. 2021. Teak: The king of timbers. In: Ramasamy Y, Galeano E, Win TT, editors. Cham: Springer International Publishing. p. 1-11. https://doi.org/10.1007/978-3-030-79311-1_1

Schlosser W. 2023. Growth and decay: forest landowner impatience factor. J For Bus Res. 2(1):38-67. https://doi.org/10.62320/jfbr.v2i1.8

Seki M, Sakici OE. 2017. Dominant height growth and dynamic site index models for Crimean pine in the Kastamonu-Taşköprü region of Turkey. Can J For Res. 47(11):1441-1449. https://doi.org/10.1139/cjfr-2017-0131

Seppänen P, Mäkinen A. 2020. Comprehensive yield model for plantation teak in Panama. Silva Fenn. 54(5):1-25. https://doi.org/10.14214/sf.10309

Skovsgaard JP, Vanclay JK. 2008. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. For An Int J For Res. 81(1):13-31. https://doi.org/10.1093/forestry/cpm041

Skovsgaard JP, Vanclay JK. 2013. Forest site productivity: a review of spatial and temporal variability in natural site conditions. Forestry. 86(3):305-315. https://doi.org/10.1093/forestry/cpt010

Tahar S, Marc P, Salah G, Antonio BJ, Youssef A, Miriam P. 2012. Modeling dominant height growth in planted Pinus pinea stands in Northwest of Tunisia . Int J For Res. 2012:1-12. https://doi.org/10.1155/2012/902381

Tewari VP, Álvarez-González JG, von Gadow K. 2014. Dynamic base-age invariant site index models for Tectona grandis in peninsular India. South For a J For Sci. 76(1):21-27. https://doi.org/10.2989/20702620.2013.870398

Torres DA, del Valle JI, Restrepo G. 2012. Site index for teak in Colombia. J For Res. 23(3):405-411. https://doi.org/10.1007/s11676-012-0277-x

Torres DA, Del Valle JI, Restrepo G. 2020. Teak growth, yield-and thinnings' simulation in volume and biomass in colombia. Ann For Res. 63(1):53-70.

Upadhyay A, Eid T, Sankhayan PL. 2005. Construction of site index equations for even aged stands of Tectona grandis (teak) from permanent plot data in India. For Ecol Manage. 212(1-3):14-22. https://doi.org/10.1016/j.foreco.2005.02.058

UPRA. 2014. Zonificación para plantaciones forestales con fines comerciales - Colombia, escala 1:100.000. Bogotá, D. C.

Weiskittel A, Hann D, Kershaw J, Vanclay J. 2011. Forest Site Evaluation. In: Forest Growth and Yield Modeling. Wiley. p. 37-52. https://doi.org/10.1002/9781119998518.ch3