Carbon as a commodity, retention as a service

Main Article Content

William Schlosser
Birgit Schlosser


carbon sequestration, carbon dioxide, timber, carbon sink, forestland rotation length


United Nations Climate Change convention protocols (2016; 2005) addressed the issue of anthropogenically reducing CO2 emissions but failed to view carbon as a commodity that can be measured when sequestered in terrestrial biometric sinks. Forestry science tools quantify tree capture of atmospheric carbon volume annually, and in what tree parts it resides. Trees photosynthesize carbon by converting atmospheric carbon dioxide to sequester carbon atoms in trees. Carbon can be commodified and traded in competitive markets via conservation easement agreements legally binding willing buyers and sellers to consented terms. Based on biometric data projections, carbon is measured in discrete forestland areas as tons per year to express a balance between its emissions and its inferred sequestered volume. Timber harvest decisions viewed through the lens of its quantified carbon volume can serve as a powerful mechanism in offsetting carbon emissions while lengthening financially optimal timber harvest rotation decisions. A commodity trading framework is articulated to link willing carbon sequestration agents (forestland owners) with willing carbon sequestration buyers in an equitable trading platform with legal terms applied through temporally defined conditions. The framework to determine carbon sequestration allowances and carbon storage payments is discussed in terms of agreements which market participants enter. In a brief synopsis, we offer our view on aligning carbon emitters with forestland sequestration operatives articulating meaningful financial and social benefits for those involved.

Abstract 46 | View Full Text Downloads 0 Download PDF Downloads 29